
FormalCORE™ PCI/32
A Formally Verified VHDL Synthesizable PCI Core

Bhaskar Bose, M. Esen Tuna and Ingo Cyliax
Derivation Systems, Inc.

Carlsbad, California, USA.
www.derivation.com

Abstract

This paper describes an integrated design methodology for the use of formal methods with existing tools in the
context of developing FormalCORE PCI/32. The primary goal is to develop technology for the design and
verification of formally verified IP cores that includes all the features, documentation, and support necessary to
insure integration into designs with the high degree of reliability provided by the application of formal
methods. Validation techniques used in developing these cores include formal specification, formal synthesis,
simulation, hardware emulation, theorem proving, and model checking.

1 Introduction

The PCI[6,7] Local Bus is a high performance, 32-bit or 64-bit bus with multiplexed address and data lines.
The bus is designed for use as a high-speed interconnect mechanism between peripheral components and
processor/memory subsystems.

FormalCORE™ PCI/32 is a synthesizable VHDL[4] 32-bit, 33MHz PCI interface core targeted to
programmable hardware. The VHDL description is formally synthesized using our DRS[1,2] formal synthesis
system and formally verified using the Verysys PropertyProver model checker to be compliant with the v2.1
PCI specification.

The overall goal of the project is increased assurance by using a variety of formal methods technologies in
concert to attack a practical problem. We have developed the methodology for the design and validation of
VHDL cores with a variety of tools that can serve as documentation, and increase assurance. In meeting the
primary goal of the project we achieve a reduction in the development time as well. Once the design flow was
in place, correcting specification bugs and rechecking the properties was a routine task rather than a challenge.

A key benefit to this approach is that it allows for the deployment of formal methods into current engineering
practice via pre-designed, pre-verified components that meet the stringent reliability and safety requirements
that are necessary in avionics and space applications. These components can then be integrated into larger
designs providing the building blocks for complex designs and the foundation for design reuse.

In developing the FormalCORE technology we rely heavily on both formal and traditional design and
verification tools. We recognize at the early stages of planning that a comprehensive approach to the
integration of formal verification techniques to an existing design flow is critical to the success of the
technology. A well implemented design and verification strategy, incorporating formal techniques at key
points in the design flow minimizes the likelihood of design errors.

2 The PCI Bus Protocol Standard Revision 2.1

The PCI bus specification was first developed by Intel Corporation and was released in June 1992. It was
intended to define an industry standard for local bus architectures. Revision 2.1 became available in early
1995 and is managed by a consortium of industry partners known as the PCI Special Interest Group. The
specification is a 282-page English language document describing the protocol, electrical, mechanical, and
configuration specification for PCI components and expansion boards.

The PCI specification defines two possible PCI agents, amasterand atarget. The master is the device that
initiates a transfer. The target is the device currently addressed by the master for the purpose of performing a
data transfer. The master and target state machines are independent. However, a master device must
incorporate a target device for the purpose of responding to system configuration requests.

The minimum PCI compliant device satisfies the requirements of a target-only device. This device requires 47
pins and can only respond to a master initiated transaction. A master device requires two additional signals,
(REQ# and GNT#), for it to handle data and addressing, interface control, arbitration, and system functions.
Figure 1 illustrates the required and optional signals for a PCI compliant device. The signals on the left are
required pins for target and master devices. The signals on the right are optional pins and are used to support
the 64-bit extension to the specification, exclusive access (LOCK#), interrupts, cache support, and the JTAG
(IEEE 1149.1) boundary scan interface.

AD[31::0]
C/BE{3::0]

PAR

FRAME#
TRDY#
IRDY#

STOP#
DEVSEL#

IDSEL

PERR#
SERR#

REQ#
GNT#

CLK
RST#

Address
& Data

Interface
Control

Error
Reporting

Arbitration

System

PCI
COMPLIANT

DEVICE

AD[63::32]
C/BE[7::4]#

PAR64
REQ64#
ACK64#

LOCK#

INTA#
INTB#
INTC#
INTD#

SBO#
SDONE

TDI
TDO
TCK
TMS
TRST#

64-Bit
Extension

Interface
Control

Interrupts

Cache
Support

JTAG
(IEEE 1149.1)

Required
Pins

Optional
Pins

Figure 1: PCI Compliant Device Signals

The heart of the PCI Bus Protocol is the burst transfer mechanism. A burst transfer consists of a single address
phase followed by two or more data phases. The start address and transaction type are issued during the
address phase. The target device latches the start address into an address counter and is responsible for
incrementing the address from data phase to data phase. Figure 2 illustrates a sample read transaction.

A basic bus cycle involves the FRAME#, IRDY#, TRDY#, C/BE# control signals as well as the multiplexed
address/data AD[31:0] lines and the parity signal PAR and DEVSEL#. The bus cycle starts with anaddress
phase. This is the first clock after FRAME# is asserted by the master. During this cycle, the address lines
carry the desired address and the C/BE# signals the bus command. Bus commands encode the address space
and direction of transfer. There are also some special bus cycles, like interrupt acknowledge and various
memory transfer modes. After the address phase, the master goes into thedata phase.

The addressed target, will then decode the address to determine if it needs to take the bus cycle. It can decode
either as a fast/medium/slow decoder, which are 1,2,3 cycles after the address phase. Once it has decoded and
accepted the bus cycle, it asserts the DEVSEL# signal to signal that it will take the bus cycle. When the master
has sent data via the AD[31:0] or when it is ready to receive data, it will assert the IRDY# signal. The target
indicates its readiness with the TRDY# signal. Only when the TRDY# and IRDY# signals are both asserted,
will a data transfer take place. Otherwise wait states are inserted. The master controls how much data is

transferred. When it is done transferring data, it will de-assert FRAME# on the last data phase. When the
target sees neither FRAME# or IRDY#, the master has finished.

The target uses the STOP# signal to signal the master that it has to terminate the current transaction. The PCI
Target asserts combinations of TRDY#, DEVSEL#, and STOP# to signal different termination conditions.
The PCI protocol is specified in plain English. The specification contains rules such as:

“Data is transferred when IRDY# and TRDY# are asserted.”

“When either TRDY# or IRDY# is deasserted, a wait cycle is inserted and no data is transferred.”

3 FormalCORE PCI/32 -- A Formally Verified PCI Interface

P
C

I
 B

U
S

 Master
 State
Machine

 Target
 State
Machine

 Parity
 Checker
Generator

P
C

I A
pp

lic
at

io
n

D
ev

ic
e

par

serr#
perr#

frame#
irdy#
req#
gnt#

trdy#
devsel#
stop#

add_reg[31:0]

 Latency
Timer Reg

 Status
Command

Base Address
 Registers

MaxMinLat
Interrupt Pin/L

Other Config
 Registers

Decoder/ Device Configuration

idsel_reg

hit
d_done
cfcmd

application status

Device ID
Vendor ID

ad_out[31:0]

ad[31:0]

idsel

C/BE#[3:0]

PCI Interface

cmdrd

cmdwr

cmd_reg

tstatus
cbe_reg[3:0]

cmdwr/rd

Figure 3: FormalCORE PCI/32 System Architecture

1 2 3 4 5 6 7 8 9CLK

FRAME#

AD

C/BE#

IRDY#

TRDY#

DEVSEL#

Address

Buscmd BE#s

Data1 Data2 Data3

Address
 Phase

 Data
Phase

 Data
Phase

 Data
Phase

BUS TRANSACTION

W
ai

t

W
ai

t

W
ai

t

X
fe

r

X
fe

r

X
fe

r

Figure 2: PCI Timing Diagram

FormalCORE PCI/32 is a synthesizable VHDL 32-bit, 33 MHz PCI interface targeted to programmable
hardware, formally verified to be compliant with the v2.1 PCI specification. Figure 3 is a block diagram of the
FormalCORE PCI/32 system architecture.

The design is composed of three primary modules. A PCI Interface Module, Decoder/Device Configuration
Module, and PCI Application Module. The PCI Interface Module is the primary interface to the PCI bus and
user application. It contains the Target and Master state machines, parity circuit, and implements the bus
protocol. The Decoder/Device Configuration Module contains the PCI configuration registers and address
decode circuitry. The PCI Application Module is a stub module defining a backend interface. This module is
used to integrate the user's application into the PCI core. It is not specified in v2.1 since it is dependent on the
specific device. For example, the Application Interface would vary widely between a video device and a
modem. This partitioning allows us to swap different application backends to the existing core with minor
modifications.

4 Design and Verification Tools

The software tools comprising our design and verification suite included:

•= DRS (Derivational Reasoning System), formal synthesis system from Derivation Systems, Inc. to develop
high-level formal behavioral specification, high-level simulation, hardware emulation, and formal
synthesis to VHDL and gate-level netlist. We use DRS to derive a structural specification from the top-
level behavioral description, synthesize VHDL code and PVS theories. The system was also used for
functional simulation of the top-level specification, and as the interface to hardware emulation of the
synthesized design.

•= PVS[5] (Prototype Verification System) from SRI for validating safety and liveness properties of the top-
level behavior specification.

•= Verysys PropertyProver[8] and StructureProver[8]. PropertyProver is a state-of-the-art model checker that
can verify model properties at the Behavior, RTL and Gate levels. StructureProver is a high-performance,
high capacity equivalence checking tool that can be used at the RTL and Gate levels. The Verysys tool
suite was chosen for its support of the IEEE 1076 VHDL standard and hierarchical verification. In
addition, PropertyProver generates an input sequence and a VHDL testbench for counter-examples. The
built in VHDL simulator can be used to simulate the counter example.

•= Verysys Circuit Interface Language[3,8] to formally describe circuit properties. These properties are
described using temporal relationships between the various input and output ports of the circuit. CIL is
used to describe the PCI Compliance Model to validate the VHDL core. Properties are written in an
assumption-commitment style. Predicates in the logic are written using VHDL syntax.

•= ModelSim from Model Technologies for VHDL simulation. ModelSim is chosen because it is a full
featured VHDL simulator providing accurate modeling of the language. It provides a rich set of features.

•= Xilinx Foundation Express[9] for VHDL synthesis, gate-level timing analysis, gate-level simulation, and
FPGA programming. Foundation Express incorporates the Synopsys Express VHDL compiler and Aldec
gate-level timing analyzer and simulator. Foundation Express provides a low-cost, comprehensive
solution for FPGA programming. The entry to the tool can be VHDL, Verilog, Schematic entry, or gate-
level netlist. Xilinx offers a variety of chips that are PCI compatible and is an industry leader in
programmable hardware.

5 Design and Verification

The primary design criteria for FormalCORE PCI/32 was to synthesize a VHDL model from DRS that would
run at 33Mhz, optimized for size, and compatible with the various VHDL level tools. The generated VHDL
had to be compatible with the Verysys model checker, Synopsys FPGA Express compiler, and Model
Technologies VHDL simulator.

From the PCI Specification document, we developed a formal PCI compliance model in CIL, Verysys circuit
interface language. These properties are described using temporal relationships between the various input and
output ports of the circuit. They are extracted from the PCI rules in the specification document.

Formal design and verification is a theme that runs throughout the lifecycle of the FormalCORE PCI/32
development. Verification tools were used continuously once the design reached a state where the tools were
applicable. DRS synthesis served as a backplane for the design flow. Changes in the design were reflected in
the DRS top-level specification and the VHDL was re-synthesized.

The need for verification in this project was two fold. First the specification had to be proven to meet the PCI
specification properties. The correctness of the specification in derivation is assumed, not proven. Secondly,
even though DRS guarantees correctness of its transformations in the original specification, the state
representation and the VHDL translation are not reasoned about. Therefore, the generated VHDL had to be
shown to satisfy the same properties as the initial DRS specification.

Once a stable DRS specification was established, PVS was employed to validate the DRS top-level
description. DRS was then used to derive a structural description from the top-level specification and generate
VHDL. Verysys model checker, Model Technologies VHDL simulator, and Synopsis VHDL compiler were
used for VHDL property verification, simulation and synthesis. The synthesized gate-level design was
simulated with the Xilinx simulator.

Several modes of validation were always running in parallel. We performed functional simulation of the top-
level and structural DRS descriptions. We simulated the design both at the VHDL and gate-level. Formal
verification at the high-level, and formal verification at the VHDL level were used to validate properties of the
design. The design flow (Figure 4), from high-level formal specification to running hardware can be
characterized as five stages of design.

Specification Development

Formal Synthesis

VHDL Validation & Synthesis

Netlist Validation & Mapping

Post-design Validation

Figure 4: Design Flow

The design flow reflects a top-down design methodology. It provides for the formal specification and
verification at an abstract behavioral level, and a systematic process to refine the design to a concrete VHDL
implementation. The design flow incorporates formal and traditional validation techniques. The use of DRS

and formal methods contributes to the soundness of the specification and implementation, and VHDL provides
an industry standard language to interface to other tools. Figure 5 details the design and verification flow and
the tools used. Shaded boxes denote formal tools. Shaded ovals denote formal specifications. Clear boxes
denote traditional design tools.

High-level
Formal

Verification

Formal
Behavior

Specification

Functional
Simulation

VHDL
Simulation

Gate-level
Simulation

Formal
Synthesis

VHDL
Synthesis

Netlist
Mapping

FPGA
Design

Hardware
Platform

VHDL
Formal

Verification

Netlist
Timing

Analysis

Safety/Liveness
Properties

PCI Compliance
Model

DRS

VERYSYSSYNOPSYS

ALDEC XILINX

PVS

PVS

CIL

ALDEC

ModelSIM

DRS

DRS

Test Vectors

Test Vectors

Test Vectors

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5
Test Vectors

DSI PF2000

Formal Tool/
Specification

Figure 5: Design and Verification Flow

5.1 Specification Development

In the first stage the top-level behavior specification is developed and validated using simulation and formal
verification. Verification begins early using the DRS functional simulator. A high-level behavioral model is
written in DRS and run against test vectors. This behavior model becomes the reference model for all
subsequent verification and synthesis.

[b_busy
(lambda (add_reg cbe_reg idsel_reg ...)

(let ([devsel_lo_o HI] [serr_lo_o HI] [trdy_lo_o HI]
[stop_lo_o (not (and (or t_abort term)

(or wrcmd (and rdcmd tar_dly))))]
...)

(if (and (or frame (not d_done)) (not hit))
(b_busy ...)
(if (and (or frame irdy)

(and hit (and (or (not term) (and term ready))
(or free (and locked l_lock_lo)))))

(s_data ...)
...))))]

Figure 6: Code fragment for Target Interface b_busy state

The top-level DRS specification is a collection of communicating state machines. Each state machine is
defined in terms of a set of mutually recursive function definitions. A fragment of the b_busy state of the
Target Interface is depicted in Figure 6. Because of the reactive nature of the protocol specifications, the
specification is written at a fine level of granularity. The specification captures the complete synchronous
behavior of the PCI core circuit.

DRS descriptions were written for the master and target state machines along with their lock machines, the
configuration/decode circuit, the parity circuit, and a basic application backend. The chip-level glue-logic was
also written integrating all the modules into a single core. Figure 7 illustrates the modules and their
interconnectivity.

Target
 Lock

Add4 Dec4

 Target
Interface

 Master
Interface

Master
 Lock

Application
 Backend

Configuration
 Space

 Parity
Generator

Figure 7: DRS Specification Hierarchy

An abbreviated form of the top-level DRS description is shown below. The module instantiations are show in
bold.

(define mchip
(lambda (cbe_lo ad par idsel frame_lo irdy_lo trdy_lo stop_lo lock_lo

perr_lo serr_lo devsel_lo gnt_lo)
(stream-letrec

([tsbuf (lambda (o oe) (if oe o #\z))]
[parity (lambda ((d0 ... d31) (c0 c1 c2 c3)) (b-xor ...))]
...)

(letrec (...) ;; -- Component descriptions
(system-letrec

([(add_reg cbe_reg idsel_reg ...) (target_xface ad cbe_lo par ...)]
[(conf_data hit d_done cfcmd ...) (target_conf add_reg ad ...)]
[(ad_o cbe_lo_o tstatus t_abort ...) (backend mxfer add_reg ...)]
[(lock_lo_oe own_lock ...) (master_xface par idsel frame_lo ...)]
[(tfree tlocked) (target_lock frame_lo lock_lo l_lock_lo hit ...)]
[(lock_free) (master_lock frame_lo lock_lo own_lock)]
[par_c (parity (if par_dir ad_out ad)

(if par_dir cbe_lo_out cbe_lo))]
[ad_out (tsbuf32 (if (b-or ior cmdwr) ad_o conf_data)

(b-or ad_oe m_ad_oe))]
[frame_lo_out (tsbuf frame_lo_o frame_lo_oe)]
[irdy_lo_out (tsbuf irdy_lo_o irdy_lo_oe)]
...)

(list ad_out cbe_lo_out par_out frame_lo_out trdy_lo_out irdy_lo_out
stop_lo_out perr_lo_out serr_lo_out devsel_lo_out req_lo
lock_lo_out ...))))))

The DRS behavior model is automatically translated into a PVS theory to perform formal verification. The
primary goal is to verify that the specification satisfies a set of high-level safety and liveness properties.
Inconsistencies in the top-level specification found by PVS are then manually corrected in the DRS
specification.

The DRS->PVS translator generates a PVS function corresponding to the state to state transition of the DRS
model. PVS was used to analyze the functional properties of the specification. For example, we show that the
trdy_lo_o signal is asserted only whent_abort is false andready is true with the PVS theorem:

trdy_on_write: THEOREM
(FORALL (t_abort: bit, tar_dly: bit, ready: bit):

compute_trdy_lo(write, t_abort, tar_dly, ready) = true_lo
IFF NOT(t_abort) AND ready).

The From_idle_goto_busy theorem states that from IDLE, only whenframe_lo_i is asserted, the
Target sequencer goes to the BUS BUSY state.

From_idle_goto_busy: THEOREM
(FORALL ((frame_lo_i: bit), (irdy_lo_i: bit), (trdy_lo_i: bit),

(stop_lo_i: bit), (perr_lo_i: bit), (serr_lo_i: bit),
(devsel_lo_i: bit), (ready: bit), (t_abort: bit),
(term: bit), (state: state_type),
(cbe_reg: [bit, bit, bit, bit]), (tar_dly: bit),
(par_dat: bit), (par_en: bit), (par_i: bit),
(perr_dat: bit), (r_perr: bit), (rperr_reg: bit)):

idle(frame_lo_i, irdy_lo_i, trdy_lo_i, stop_lo_i,
perr_lo_i, serr_lo_i, devsel_lo_i, ready,
t_abort, term, state, cbe_reg, tar_dly, par_dat,
par_en, par_i, perr_dat, r_perr, rperr_reg)

= bus_busy
IFF (frame_lo_i = true_lo))

Many of the functional properties verified in PVS were also verified in the Verysys model checker. Both PVS
and Verysys were useful in finding errors in the design. Early in the design process, we used sample equations
from the PCI specification as a guide to developing the DRS specification. PVS uncovered overlaps in some
of the equations. A set of conditions would satisfy two different equations.

5.2 Formal Synthesis using DRS

In the second stage, formal synthesis is used to manipulate the design hierarchy and derive a VHDL
description from the top-level behavior specification. This process requires manual guidance from the
designer. DRS provides automated support for transforming the specification to a concrete implementation,
however, design decisions are made by the designer. DRS maintains correctness and does not allow the
introduction of errors. The key benefit is that it provides the designer with direct control over the synthesis
process.

DRS can manipulate a large class of designs including datapath and/or control oriented circuits. The PCI
specification is a control-dominated circuit geared for bus protocol. DRS allowed us to manipulate the PCI
design hierarchy providing a means of managing the complexity of the verification and defining the
synthesized VHDL modules. We found that manipulating the design hierarchy of the VHDL would impact
how the VHDL compiler would synthesize the design. Hierarchy played an important role in the speed of the
synthesized circuit. The synthesizer did better when the design was in logically organized major blocks than a
totally flat description or when there were many small modules instantiated in the larger ones.

The derivation was limited to obtaining a structural specification and generating the support modules from
DRS libraries. We added four valued logic libraries to DRS. This enabled DRS to generate tristated
input/output signals which are essential in a bus implementation.

The following table summaries the number of derivation steps, the specification and implementation size for
each of the modules, along with the top-level mchip module.

Add4 Dec4 Backend Txface Mxface Tconf Tlock Lock mchip
DervSteps 14 14 15 128 77 30 19 9 55
Spec Size 899 899 4440 12800 13906 5507 732 347 6209
Imp. Size 3194 3434 14286 12554 7471 10632 563 416 55790
VHDL Size 2669 2849 11909 11832 8425 8792 1002 858 48973
VHDL Comp 2669 2849 5493 9163 8425 8792 1002 858 9722

DRS and VHDL sizes include all the modules that make up the component. The component VHDL size lists
only the size of that component. All sizes in bytes.

5.3 VHDL Generation, Validation and Synthesis

5.3.1 VHDL Generation

Once the design is refined to a concrete architecture in DRS, VHDL files are automatically generated and the
VHDL Validation and Synthesis process begins. Model Technologies ModelSIM is used to simulate the
VHDL. To streamline our simulation environment, we created interfaces from the DRS simulator to the
VHDL and netlist simulator. This provided us the ability to localize our test vector generation within the DRS
framework, and then automatically generate test vectors to validate the netlist generated by the VHDL
compiler, and VHDL simulator.

The tools we used understood only a restricted subset of the VHDL language. We had to tune the VHDL
generation toward the common syntax used among these tools. For example, the Verysys VHDL type checker
could not resolve predicates of the form:ad(1:0) = "00". The DRS VHDL generation had to produce
expressions of the form:ad(1) = '0' and ad(0) = '0'.

The VHDL compiler infers registers in a design depending on the way the code is written. Rather than an
implicit mechanism to infer registers, we controlled the introduction of registers in the design by an explicit
register entity, that served as a state holding abstraction and directly corresponded to DRS registers. The
combinational logic is expressed as simple equations of assignments and entity instantiation. The resulting
VHDL follows the intended implementation architecture closely.

To improve performance we experimented with several hierarchical design layouts. When flattening
hierarchies the circuits were logically equivalent. However the circuit speed varied widely.

In generating VHDL, DRS constructs had to be mapped carefully over to VHDL constructs to ensure the
semantics of the DRS expression is maintained. One problem we ran into was generating VHDL code for
nested DRS if-then-else expressions. These expressions cannot be converted to selected signal assignments
(WITH statement) unless the else branch guard is ANDed with the negated test expression. However,
conditional signal assignment behaves just like a nested DRS if-then-else expression and is used instead of the
WITH statement. In fact, the Verysys model checker uncovered this bug in the DRS VHDL generation.

5.3.2 VHDL Validation

The Verysys model checker is used to validate the VHDL against the PCI compliance model written in CIL.
The underlying model checking technology used by the Verysys tools is the Siemens Circuit Verification
Environment (CVE) [3]. The system is a BDD based symbolic model checker. It supports EDIF and VHDL,
and generates VHDL test benches for counter examples.

Circuit properties are written in CIL (Circuit Interval Language). CIL formulae are built up from timed
predicates that consist of a state predicate and a temporal specification. The temporal specification describes
when the machine should be in a state that satisfies the state predicate. The state predicate is given in the
subset of Boolean expressions in VHDL. The temporal specifications refer either to a particular point of time,
or to a whole period. A point of time is specified after the keywordat . A period is specified by an interval,
which is a uniform representation of three different types:[t1, t2] , refers to the time betweent1 andt2
inclusively, [t1, infinite] , refers to t and every point aftert , [t, p] , refers to the time betweent
and the last point of time before the state predicatep is satisfied for the next time.

An interval is preceded byduring or within to specify whether the state predicate holds during the whole
period or at least once in the interval. Times are either integer constants or defined relative to a variablet
which is universally or existentially quantified byalways andfinally .

As an example, we express the property that the "Target Sequencer will never deadlock" as:

theorem target_deadlock;
assume: (set = '0' during [0, infinite]);
prove: always(possibly state = idle within [t, infinite]);

end theorem;

The assumption eliminates the reset state, and the proof guarantees that no matter what state the Target
Sequencer is in, there exists a path to the idle state.

We prove that the Target Sequencer that implements the sustained tristate signals correctly with the following
theorem:

theorem target_sustained_tristate_trdy;
assume: (set = '0' during [0, infinite]);
prove: always((trdy_lo_oe = '1' at t-1) and

(trdy_lo_oe = '0' at t)
implies (trdy_lo_o = '1' at t-1));

end theorem;

In order for a signal to adhere to the sustained tristate property, it must drive the signal high one clock cycle
before tristating the signal.

Most of the effort at this stage was spent developing the PCI compliance model. It was critical to be able to
ask the "right" question. This was difficult since we had no prior understanding of the PCI protocol. Once the
protocol was understood, writing the CIL properties from the PCI specification was fairly straight forward and
the actual running of the model checker was automatic. Counter examples generated by the model checker
were validated with the ModelSIM simulator at the VHDL level as well as in the DRS simulator. This
capability allowed us to pinpoint if the problem was in the top-level DRS specification, VHDL generation, or
VHDL code.

The design environment of this project consisted of two dynamic aspects: on the one hand the engineering
process and on the other the formal process. From initial specification to working hardware the model checker
did not find any errors that our hardware engineer did not find using traditional techniques. The model

checking was lagging behind in this process. Errors uncovered by the engineering process led to revisions in
the DRS specification.

After working hardware was achieved the model checker started finding errors in the design that the simulator
did not uncover. This was due to three facts. First, the simulation tests were not exhaustive. Second,
hardware and specification reached a level of maturity where the core appeared to work for most cases.
Thirdly, we developed a better understanding of the PCI protocol.

The compliance model provides a comprehensive formal validation of PCI compliance and becomes extremely
valuable in providing exhaustive analysis of the VHDL model. Inconsistencies found in the PCI specification
were documented, and design decisions were made to resolve them.

5.3.3 VHDL Synthesis

The VHDL files are input to Synopsys FPGA Express compiler for netlist synthesis. The issue in this process
is that minor changes to the VHDL would result in significant performance changes in the synthesized netlist.

5.4 Netlist Validation and Mapping

The next stage involves simulating the netlist, and using the model checker to validate that the VHDL
synthesis has not introduced any errors. Timing analysis is also done at this time. The netlist is then mapped
to the appropriate target technology for hardware programming. At this stage, the logic netlist is validated
using the Aldec netlist simulator. Test vectors written for the DRS architectural simulation are used at the
VHDL and netlist level.

The logic netlist is formally verified using Verysys StructureProver. This ensures that the synthesized netlist
behaves identical to the VHDL model in order to eliminate the possibility that logic bugs that would be
introduced during VHDL synthesis. The equivalence checker compares the finite state machine models of the
VHDL source and EDIF files of the synthesized netlist. There were no errors in the VHDL synthesis.

The Xilinx mapper then synthesized the appropriate configuration files for the target device.

5.5 Post-design Validation

Traditional hardware techniques were used for post-design validation.

The DRS Functional Test Environment (FTE) was used for hardware emulation of the synthesized PCI core.
The FTE consists of the DRS simulation environment communicating with a Ampro EBX form factor Pentium
based single board computer (SBC) and the PF2000 PC/104 FPGA module. The synthesized core is
downloaded on to the PF2000 FPGA module. Then the DRS simulator drives the inputs of the circuit, single
steps the clock, and samples the outputs, displaying them in the DRS simulator. In contrast to the functional
simulation of the model in DRS, the FTE was used to compare the functional behavior of the model to that of
a design that has been processed by implementation specific back end tools.

The core has been targeted to Xilinx XC4000 and Virtex family of FPGA devices. A working prototype is
running in two different environments. The first system is a standard PCI/ISAbus AT motherboard with a
AMD-K5 processor clocked at 133MHz. It includes an NE2000 compatible ISAbus based Ethernet card and a
PCI VGA card.. The second system is an AMPRO PC/104+ system consisting of a Ampro EBX form factor
Pentium based single board computer (SBC). Both systems are configured with 32Mb of memory and runs
Linux RedHat 6.0, which is based on a 2.2.5 Linux kernel.

6 Conclusions

The methodology developed to build the FormalCORE PCI/32 is an example of how formal tools and
traditional simulation and synthesis tools are integrated for the design and validation of VHDL IP cores. These
cores can then be integrated into larger designs providing the building blocks for complex designs.

The FormalCORE PCI/32 and associated PCI compliance model consists of pre-designed, pre-verified VHDL
components that can be integrated into larger designs and a validation suite providing exhaustive analysis of
the VHDL models using a commercial model checker. The core has been designed to be flexible and can be
adapted to a variety of designs with little or no modification to the VHDL or compliance model.

One observation is in the early stages of this project, traditional techniques led the design process. The
ModelSIM VHDL simulator, Aldec netlist simulator, and hardware Logic Analyzer were used to debug the
design. The model checker did not find any errors that either simulation or hardware debugging did not catch.
The traditional techniques were satisfactory in achieving a working prototype. In the later stages of the
project, the formal techniques led the design process. The model checker was able to find errors in the design
that were not tested for in simulation. Using the DRS system, we were able to routinely make changes to the
top-level specification, manipulate the design hierarchy, and re-synthesize the VHDL core. We could then re-
validate the core against the compliance model automatically.

Both PVS and the Verysys model checker were useful in developing the PCI core. PVS was used to verify
functional properties of the DRS top-level specification. Verysys was used to verify functional and temporal
properties of the DRS generated VHDL. The Verysys verification effort was more extensive since the end
goal was to develop a verified VHDL PCI core and compliance model.

This work has significantly enhanced our capability to design and validate VHDL cores. The enhancements
added to the DRS system are general and can be used to synthesize a wide array of designs.

The future work on this topic is to extend the PCI core and Compliance model to the 64-bit PCI standard,
retarget the core to operate at 66Mhz, and update the design to Revision 2.2 of
the PCI specification. In addition, we would like to perform an independent validation of the compliance
properties.

References

1. Bose, B. DRS – Derivational Reasoning System: A Digital Design Derivation System for Hardware
Synthesis. InSafety and Reliability in Emerging Control Technologies(1996), S. Zaleswki, Ed., Elsevier.

2. Bose, B., Tuna, E., and Choppell, V., A Tutorial on Digital Design Derivation Using DRS., InFormal
Methods in Computer-Aided Design, M. Srivas and A. Camilleri (eds.), Springer, 1996, pp. 270-274.

3. Bormann, J., Lohse, J., Payer, M., and Venzl, G., Model Checking in Industrial Hardware Design, In
Proceedings 32nd Design Automation Conference, pp. 298-303, June 1995.

4. IEEE Standard VHDL Language Reference Manual. The Institute of Electrical and Electronics Engineers,
Inc., New York, IEEE Std 1076-1993 edition, 1994.

5. Owre, S., Rushby, J., and Shankar, N. PVS: A Prototype Verification System. InThe 11th International
Conference on Automated Deduction (CADE), Volume 607 of Lecture Notes in Artificial Intelligence
(Saratoga, NY, June 1992), D. Kapur, Ed., Springer-Verlag, pp. 748-752.

6. PCI SIG. PCI Local Bus Specification, Revision 2.1., June 1995.
7. Shanley, T., and Anderson, D.PCI System Architecture. Addison Wesley, ISBM 0-201-40993-3.
8. Verysys Design Automation: Verysys Prover Environment Manual, VT-0050, Version 2.1, Rev. A,

Verysys Design Automation, 42707 Lawrence Place, Fremont, CA 94538.
9. Xilinx, Foundation Series Software User Manual, Version 1.5i., Xilinx, 2100 Logic Drive, San Jose, CA

95124.

